ECS Transactions, 14 (1) 547-551 (2008) 10.1149/1.2956072 © The Electrochemical Society

CHARGE TRANSPORT LAYERS IN OC₁C₁₀-PPV **PLEDS**

H L. Gimaiel^a, G. Santos^a, E. A. T. Dirani^a, F. J. Fonseca^a, A. M. de Andrade^b

^aDepartamento de Engenharia de Sistemas Eletrônicos - Escola Politécnica da Universidade de São Paulo, Brazil
^bInstituto de Eletrotécnica e Energia - Universidade de São Paulo, Brazil
corresponding author: helena@lme.usp.br

This work deals with OC_1C_{10} -PPV based active layer PLEDs. A study of the device performance enhancement with nanolayers of Alq3 [tris-(8-hydroxyquinolate)-aluminum] deposited at the contact interface between the electroluminescent layer and the cathode was conducted. Alq3 layers of different thicknesses were applied to the structures. A fourfold gain in the luminance of the devices was observed in the studied range. Operating voltage has a strong dependence on Alq3 layer thickness. Luminance values over 500 cd/m^2 for 1 nm Alq3 thick films were observed.

Keywords: PLED, ETL, electron transport layer, OC₁C₁₀-PPV.