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Power system flexibility has become a global priority

The ability of a power system to reliably and cost-effectively manage the variability and

uncertainty of demand and supply across all relevant timescales, from ensuring

instantaneous stability of the power system to supporting long-term security of supply.

Short-term flexibility

Medium-term
flexibility

Long-term flexibility

Timescale

Issue

Subseconds
to seconds

Address
system
stability, i.e.
withstanding
large
disturbances
such as
losing a
large power
plant.

Seconds to
minutes

Address
fluctuations in
the balance of
demand and
supply, such
as random
fluctuations in
power
demand.

Minutes to
hours

Manage ramps
in the balance
of supply and
demand,

e.g. increasing
electricity
demand
following
sunrise or
rising net load
at sunset.

Hours to days

Decide how
many thermal
plants should
remain
connected to
and running on
the system.

Days to
months

Manage
scheduled
maintenance
of power
plants and
larger periods
of surplus or
deficit of
energy, e.g.
hydropower
availability
during wet/dry
season.

Months to
years

Balance
seasonal and
inter-annual
availability of
variable
generation
(often
influenced by
weather) and
electricity
demand.

Source: 213t Century Power Partnership and International Energy Agency. (2018). Status of Power System Transformation 2018: Advanced Power Plant Flexibility.



Power system flexibility requirements are primarily driven by
variable renewable energy (VRE) deployment

Different levels of VRE penetration require an evolving approach to
providing power system flexibility
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Flexibility is primarily considered to help meet “residual load”
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All power system assets can provide flexibility services if
enabled by proper policy, market and regulatory frameworks

A RELATIVE ECONOMICS OF INTEGRATION OPTIONS
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The Broader Storage Ecosystem

Unsuitable for
distributed
applications

Pumped Storage
Hydropower

CompressedAir Energy

Large capacity, difficult to Storage

site, difficult to scale down
Thermal Energy Storage

Flow Batteries

Stringent operating and ) ]
g p g { Sodium-based Batteries

housing requirements

Suitable for
distributed
applications

Superconducting Magnetic
Energy Storage

Supercapacitors

Flywheels

Nickel-based Batteries

Lead Acid Batteries

Lithium-ion Batteries

J

Primarily power
: qguality applications

Primarily UPS
applications

Primarily portable
electronics applications

R

Primarily backup power
applications, supplanted
by lithium-ion for
storage-plus-DPV
applications

;

Dominant chemistry for

Thermal Storage

Mechanical Storage

Electrical Storage

Electrochemical Storage

T

solar-plus-storage and
other behind-the-meter
applications

Source: Zinaman et al. (Forthcoming). An Overview of Behind-the-meter Storage-plus-DPV Regulatory Issues. NREL Technical Report.



Lithium-ion battery deployment dominates the
electrochemical energy storage market in the U.S.

Annual utility-scale electrochemical storage deployments in the U.S., by chemistry
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https://www.eia.gov/electricity/data/eia860/

Lithium-ion Batteries: Why all the hype?

Lithium-ion battery price survey, 2010-18 ($/kWh)

Projected Cumulative Global Storage Deployment 2016-30 (GW)
Source: Bloomberg New Energy Finance (March 2019)

Source: Bloomberg New Energy Finance (November 2017)
Lithium-ion battery price survey results: volume-weighted average
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Global manufacturing capacity is expected to more than
double in the near-term

Global LiB Manufacturing Capacity Buildoutin GWH, 2018, 2020 and 2023

400

300

250
T
= 200 ﬂﬂ#"ﬁ//////
(L)

2018 2020 2023

I China Tota [ U.S. Total Korea Tota Europe Tota I Other == Demand

Source: Cairn ERA.



Battery energy storage applications and value streams
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Location matters!
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COMMON STORAGE USES CASES FOR
THE PROVISION OF FLEXIBILITY




Storage is increasingly cost-competitive for:
* individual retail customer bill reductions
e short-duration ancillary services

* longer duration applications that include a
combination of capacity, energy and transmission
services

— Key Concept: “Value Stacking”




Use Case: Behind-the-Meter Storage

Source: Sun Valley Solar
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Are behind-the-meter batteries providing flexibility services?

e Today: Activating flexibility from BTM batteries
requires smart retail tariff design

— Use of Time-of-Use Rates or Demand Charges
introduces economic signal to shift load

e Rates must be well-designed to reflect real-time conditions
(advanced metering infrastructure and billing required)

* Tension between a desire for tariff simplicity and tariff cost-
reflectivity (i.e., complexity)

 Tomorrow: Aggregation schemes hold promise
but are still being piloted (more later)




Net Energy Metering Review

NET ENERGY METERING
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The Economics of Storage-plus-DPV under NEM

* NEM with typical time-invariant rates:
— grid is effectively a free-to-access financial battery
— minimal economic benefit for storage-plus-DPV
— some reliability benefit, if valued

e NEM with Time-of-Use or Demand-based charges

— may be significant incentive to install storage by exporting /
avoiding consumption during peak periods

— This is valuable to power system to provide flexibility if retail
rates are sufficiently granular




More cost-reflective retail tariffs can promote equity and
innovation — but how much is too much?

Simplicity Cost-
Reflectivity Neads.
AMI
Complex
Billing
mm Less Price Volatility and Risk  Granularity ~ More Price Volatility and Risk ~ wffm
-
Time- . Seasonal time-of- Daily time-of-use Intra-daily time-of-use
e:glr}gy Flat tarsr use (summer/winter) (weekday/weekend) (peak/off-peak hours) Real-time pricing
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TIIT]E'- 3 : Rﬂl‘ﬂm
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Location Single price Zonal disaggregation ~ Nodal disaggregation ;ﬁ%{ﬁ:ﬁ;’i’;’é LMP +Tx/Dx losses

Amended from: Status of Power System Transformation 2017. 215t Century Power Partnership and International Energy Agency.




“Net Metering Integrity” and Grid Interactivity

* For behind-the-meter storage-plus-DPV systems, regulators in leading U.S.
states expressing concern with so-called “Net Metering Integrity”

 Net Metering is theoretically granted to eligible generation resources only,
not stored grid-supplied electricity that is later exported

— How do we ensure that NEM kWh credits are only granted to NEM-eligible?

* Related concerns around “arbitrage” activities via time-of-use rates
— When is arbitrage desirable or undesirable?

e Strategies to ensure Net Metering integrity sometime limit storage
charging/export capabilities

— This may have serious implications for “grid interactivity” and flexibility provision
in the future



Use Case: Frequency Regulation (Transmission-level)

e Significant deployment
for frequency regulation
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Megawatt Output

Battery hybridization with conventional power plants

0

43 1
40 4
35 1

30

[

20 4
15

10 -

o 05 1 15 2 25 3 B35 4 45 5 55 & 65 7 TE B BS 9 95 1D
Minutes from Start

LT 4l ]

i

Sy o ——

Mot Qutput = = Battery Output Turbine Cutput

Quick-start capability of hybrid facility

Southern California Edison hybrid battery
storage, gas turbine peaker system

Source: International Energy Agency

Pairing battery electricity storage systems with peaking plants can allow for the
provision of spinning reserves without the power plant actually running.




Myth: Storage is needed to integrate renewables in all cases

RELATIVE ECONOMICS OF INTEGRATION OPTIONS
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Energy storage is a growing threat to peaking capacity in
many U.S. states

e Short duration storage projects (e.g., 2 hours) are
nearly at parity

e Regulators in leading U.S. states (e.g., CA & NY)
state that storage with 4-hour capacity is eligible
for providing system capacity

e Emergence of “Clean Peak Standards”



A Virtuous Cycle: Higher penetrations of wind and solar
may increase the market potential for peaking batteries
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Some power systems are nearing a tipping point for 4-hour storage

providing capacity services instead of conventional generators

Source: Denholm, Paul. Utility-Scale Battery Storage: When, Where, Why and How Much?. Greening the Grid. 2019.




EMERGING STORAGE USES CASES FOR
THE PROVISION OF FLEXIBILITY




Trend: Emergence of DER Aggregation

AGL Virtual Power Plant i

1000 residential BTM storage- L
plus-DPV customers ;
(5 MW, 12 MWHh)

[ ] 0 ’
Example: South Australia’s Virtual
4 Power Plant

Intended Use:

— Voltage support for distribution
feeders with high solar penetrations

Customer Compensation:

— $1,000 incentive to install storage

— 1-year contract: $100 signing
— Capacity and frequency regulation bonus, $45 / 3 months (bill credit)
at wholesale market level

Image credit: twitter.com/aglenergy



Related Example: Fortrum Virtual Thermal Energy Storage Plant

* Pilot program:
~2,000 residential water
boilers aggregated

* Fixed bill credit for
customer :

{5-.'

e Staggered use bat?



Innovative business models come with innovative technology

Example: Gl Energy + ConEd

e Four 1MW /1MWh batteries located in
front-of-the-meter at customer sites
throughout NYC area

Congestion

 Located in constrained network areas
e Customer receives lease payment

* Regulated: ConEd granted priority
dispatch during peak local demand

* Competitive: Gl Energy can otherwise sell
flexibility services on NYISO

* Innovation: Value stacking across
regulated and competitive market
segments

Image Source: T&D World



Dual Participation in Regulated and Competitive Markets

* Example: Hornsdale Power Reserve in South Australia

100 MW, 129 MWh — Largest battery currently operating

— Context: Isolated power system with ~50% VRE; security of supply and reliability
issues; extremely high frequency control and ancillary service (FCAS) prices

Purpose Battery Services provided Price settled above
" AUD 10,000/MWh
capacity
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2 1
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Trend: evolving regulatory frameworks for distribution
companies accelerating DER investments

e Regulatory incentives are driving distribution
utilities to weigh traditional grid capacity
upgrades against emerging alternatives

e Examples:

— New York — Non-wires Alternatives

— Australia — The S5M Rule

— California — Demand Response Auction Mechanism
— U.K. = Network Innovation Competition



Trend: Emergence of DER Aggregation

AGL Virtual Power Plant i

1000 residential BTM storage- L
plus-DPV customers ;
(5 MW, 12 MWHh)

[ ] 0 ’
Example: South Australia’s Virtual
4 Power Plant

Intended Use:

— Voltage support for distribution
feeders with high solar penetrations

Customer Compensation:

— $1,000 incentive to install storage

— 1-year contract: $100 signing
— Capacity and frequency regulation bonus, $45 / 3 months (bill credit)
at wholesale market level

Image credit: twitter.com/aglenergy



Trend: Emergence of DER Aggregation

Fortrum Virtual Thermal Energy
Storage Aggregation Plant

* Pilot program: "
~2,000 residential water boilers
aggregated
* Fixed bill credit for customer ® ¥ y
F N
- Staggered use 22y




Closing Thoughts

Storage can still be considered in as in a
“familiarization” phase with utilities, regulators and
planners as costs continue to decline.

Deployment patterns and cost reductions appear to be
following a similar story as photovoltaics

Regulatory innovation can unlock multiple value
streams of storage through “value stacking”

The market for storage grows as wind and solar
penetrations increase

Participation hinges on changes to connection codes
and market/procurement rules



QUESTIONS?

Owen Zinaman — Chief Analyst
Clean Energy Transition Partners
www.cleanenergytransitionpartners.com

E-mail: Owen.Zinaman@gmail.com
WhatsApp: +1-847-436-6431



http://www.cleanenergytransitionpartners.com/

