SMALL SCALE LNG TRANSPORT

Economic Model Cost Manual

APRESENTAÇÃO

O presente manual foi desenvolvido com o intuito de amparar a utilização do modelo econômico de estimação de custos de transporte de GNL em pequena escala desenvolvido dentro do escopo do Projeto 26 no Research Centre for Gas Inovation.

As pesquisas realizadas no Projeto 26 buscaram revisar e avaliar as alternativas de transporte de gás natural via GNL e GNC, por diferentes modais para abastecer consumidores em áreas afastadas da redes de gasodutos do Brasil. A partir disto, buscou-se desenvolver um modelo econômico de estimação de custos baseado em uma visão mais ampla e integrada da logística de gás no Brasil.

O modelo para o qual este manual fornece suporte avalia os custos envolvidos na logística do transporte do gás natural liquefeito pelo modal rodoviário. Para avaliação do gás natural comprimido (GNC) ou transporte por outro modal, pequenos ajustes devem ser feitos no modelo.

AP	RESEN	TAÇÂ	١٥	2
ES	TRUTU	RA D	O MODELO	5
1.	INSE	ERIND	DO DADOS	6
	1.1.	Aba	(INPUT) Demand	6
	1.1.1	1.	Nome do Consumidor	6
	1.1.2	2.	Número de consumidores	6
	1.1.3	3.	Consumo Mensal	7
	1.1.4	4.	Duração do contrato	7
	1.1.!	5.	Meses em que existe consumo	7
	1.1.6	6.	Penetração do gás natural	8
	1.2.	Aba	Input LNG Dim.:	9
	1.2.3	1.	Logística do tanque	9
	1.2.2	2.	Logística dos caminhões	10
	1.2.3	3.	Transporte e Regaseficação	12
	1.2.4	4.	Armazenamento	12
	1.2.	5.	Liquefação	13
	1.3.	Aba	(INPUT) OPEX Estimation	14
	1.3.:	1.	Liquefação	14
	1.3.2	2.	Armazenamento e Regaseficação	16
	1.3.3	3.	Caminhões	16
2.	ABA	S DE	APOIO	18
	2.1.	Aba	LNG Dimensioning Calculation	18
	2.1.3	1.	Média de consumo diário	18
	2.1.2	2.	Dados de volume	18
	2.1.3	3.	CAPEX e OPEX da fase de liquefação	19
	2.1.4	4.	Logistics Lorries	19
	2.1.	5.	Logistics Vessels	19
	2.1.0	6.	Armazenamento	20
	2.1.	7.	Regasification	20
	2.2.	Aba	: Macroeconomic Assumption	21
	2.3.	Aba	Calculation	21
3.	ABA	S DE	RESULTADO	24
	3.1.	Aba	LNG dim. (output)	24
	3.1.1	1.	Liquefação	24

Sumário

	3.1.2.	Transporte	25
	3.1.3.	Logística- Vessels	25
	3.1.4.	Armazenamento	26
	3.1.5.	Regaseficação	26
	3.1.6.	Custo ao longo da cadeia	27
3.	2. Aba	Financial Analysis	28

ESTRUTURA DO MODELO

O modelo em Excel apresenta um total de nove abas, das quais três são para inserção de dados (entrada/Input) e oito para cálculo e apresentação dos resultados (output). A modelagem consiste na análise das seguintes etapas da cadeia do GNL, liquefação, logística, regaseficação e armazenagem.

Um desenho esquemático das etapas da cadeia é apresentado na Figura 1.

Figura 1- Cadeia logística do transporte de GNL

Para cada uma das etapas são calculados os valores de CAPEX e OPEX a partir dos dados de entrada fornecidos pelo usuário. Relacionando estas entradas a algumas premissas econômicas e logísticas chega-se ao custo total do transporte de GNL, em dólar por unidade energética (USD/MMBTU).

O final é obtido através da divisão entre os custos de CAPEX e OPEX pela quantidade de GNL a ser transportada, em unidades energéticas (MMBTU), de acordo com a Figura 2:

Figura 2- Esquema do modelo

A seguir são apresentadas as instruções de uso para cada aba presente no modelo econômico

1. INSERINDO DADOS

1.1. Aba (INPUT) Demand

Em primeiro lugar, devem ser inseridos os dados referentes a demanda energética a ser transportada. Nesta parte, o modelo recebe dados referentes ao tipo de consumidor, número de consumidores, volume do consumo (em m³), meses em que haverá consumo, penetração do consumo e anos de contrato.

	А	В	с	D	E	F
1 2 3 4 5	Res for		earch Centre Gas Innovation		Economic Mode Date of analysi: Project name	el for NG s
6						
8	8				+	+
9	Customer ID	Type of Custumer	Customer Name (eg. Householuds, high rising, restaurantes)	#customers	m³/Month	Last year of the contract (1-30)
10	1	Residential				
11	2	Residential				
12	3	Residential				
13	4	Residential				
14	5	Residential				
15	6	Residential				
16	7	Residential				
17	8	Residential				
18	9	Residential				
19	10	Residential				
20	11	Commercial				
21	12	Commercial				
0.0						
22	13	Commercial				

Figura 3 - Definindo o consumidor, volume e duração do contrato

1.1.1. Nome do Consumidor

Na aba (INPUT) Demand temos seis categorias de consumidores para inserção de dados: Residential; Commercial; Industrial; NGV; Power; Other;

O primeiro passo é diferenciar o consumidor, inserindo seu nome em sua categoria. A coluna "C" desta aba destina-se a isso, como é mostrado pela seta vermelha na Figura 3.

1.1.2. Número de consumidores

Uma vez nomeados os diferentes consumidores devemos informar a sua quantidade. A coluna "D" recebe estes valores, como é indicado pela seta azul na Figura 3

1.1.3. Consumo Mensal

A quantidade consumida (em m³) por mês por cada categoria deve ser inserida na coluna "E", como é indicado pela seta verde na Figura 3

1.1.4. Duração do contrato

A duração do contrato de fornecimento para as diferentes categoria deve ser explicitada na coluna "F", como é indicado pela seta roxa na Figura 3.

A inserção deste dado deve ser dada na forma do número do último ano de contrato. Assim, para um contrato com duração de 27 anos, por exemplo, deveremos inserir o numeral 27.

1.1.5. Meses em que existe consumo

Ao longo do horizonte de contrato podem existir anos em que o consumo não é perene. Desta forma, as colunas de "H" até "AK", mostradas na Figura 4, recebem os valores referentes aos meses em que haverá consumo para cada ano de contrato. Os dados devem estar no intervalo $1 \le x \le 12$ representando os meses em que há consumo. Assim, se há consumo em todos os meses, por exemplo, inserimos o número 12. Se há apenas em três, inserimos o número 3.

	н	1	J	к	L	м	N
8	#of month consumptio	n per year (1-12)					
_							
9	YEARO	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

Figura 4 - Meses em que haverá consumo

1.1.6. Penetração do gás natural

A penetração dos gás natural, ou seja dado o potencial estimado, qual a porcentagem que se espera obter ao longo do horizonte de contrato, deve ser inserida ao longo da tabela exibida na Figura 5.

	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
8	% of NG pen (higher than	etration 0%)								
9	YEARO	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	YEAR7	YEAR8	YEAR9
10										
11										
12										
13										
14										
15										
16										
1/										
18										
20										
21										
22										
23										
24										
25										

Figura 5 - Tabela para inserção do % de penetração

1.2. Aba Input LNG Dim.:

Nesta aba serão inseridos os dados essenciais para o dimensionamento do custo de transporte do GNL. A inserção dos dados e o cálculo dos custos divide-se nas etapas de liquefação, transporte, logística, armazenamento e regaseficação.

Figura 6 – Input: logística do tanque

	А	В	с	D	E	F	
1 2	Research Centre		rch Centre		Economic Model for NG Date of analysis		
3 4 5	for Gas Innovation		as Innovation		Project name		
6							
8					<u>INPUTS</u>		
9	ID	Туре	Description	VALUE CHAIN - STAGE	Value	Unit	
10	1	Volumetric	Vessel capacity	Logistics - Vessel		m3 of LNG	
11	2	Volumetric	Fillable Volume	Logistics - Vessel		% of capacity	
12	3	Volumetric	Boil off	Logistics - Vessel		% per day	
13	4	Time	Vessel Disponibility	Logistics - Vessel		hours/year	
14	5	Flow	Vessel Flow rate	Logistics - Vessel		m³/hour	
15	6	Speed	Vessel Speed	Logistics - Vessel		km/h	
16	7	Time	Loading/offloading time	Logistics - Vessel		hours/operation	
17	8	Time	Preparation for departure	Logistics - Vessel		hours/operation	
18	9	Time	Anchoring and Arrival	Logistics - Vessel		hours/operation	
19	10	Time	Preparation for returning	Logistics - Vessel		hours/operation	
		ODEV	Cost	Logistics Vessel		USD/mmhtu	

1.2.1. Logística do tanque

Nas onze primeiras células de input desta aba deveremos inserir os dados referentes ao tanque a ser utilizado. Obs.: os dados a serem inseridos nesta parte referem-se ao tanque acoplado ao caminhão que transportará o GNL.

1.2.1.1. Capacidade

Na célula E10 deveremos inserir a capacidade do tanque de transporte em m³ de LNG

1.2.1.2. Capacidade útil

O volume do tanque de transporte que será preenchido em cada viagem deverá ser inserido na célula E11 (inserir o valor em termos percentuais, o quanto do volume total possível será carregado)

1.2.1.3. Evaporação

A estimativa da quantidade de gás liquefeito que será perdida devido a evaporação deverá ser inserido na célula E12 (inserir o percentual do volume carregado que espera-se perder por *boil off*)

1.2.1.4. Disponibilidade do tanque

O uso do tanque de transporte deve ser inserido na célula E13

1.2.2. Logística dos caminhões

As próximas entradas de dados referem-se a parte da logística dos caminhões. Tempo, distância e volume são algumas das variáveis consideradas nesta tabela.

	Α	В	С	D	E	F
1 2 3 4 5	Research Centre for Gas Innovation			Economic Mo Date of analy: Project name	del for NG sis	
6 7 8					INPUTS	
9	ID	Type	Description	VALUE CHAIN - STAGE	Value	Unit
21	12	Volumetric	Nominal Volume per module	Logistics - Lorries		
22	13	Wheight	Empty cilinder wheight	Logistics - Lorries		KG
23	14	Volumetric	Conversion factor 1m3 LNG to NG	Logistics - Lorries		m³
24	15	Time	Balancing and adjusting time and conections	Logistics - Lorries		hour
25	16	Time	Filing Time	Logistics - Lorries		hour
26	17	CAPEX	Lorries	Logistics - Lorries		USD/lorrie
27	7 18 CAPEX		Lorries replacement	Logistics - Lorries		years
28	8 19 Cost		Lorrie Yield	Logistics - Lorries		KM/Litre
29	20	Distance	Liquefacion plant to Regas	Logistics -Lorries		km
30	21	Speed	Average transportation speed	Logistics -Lorries		km/h
31	22 Transport Truck Capacity		Logistics -Lorries		m3 of LNG	
32	23	CAPEX		Logistics -Lorries		usd/tank

Figura 7- Input: logística dos caminhões

1.2.2.1. Volume nominal por módulo

O volume de gás que será transportado em cada composição. Inserir o valor em m³ na célula E21.

1.2.2.2. Peso do cilindro vazio

O peso do tanque a ser transportado pelo caminhão. Inserir o peso do tanque vazio na célula E22 em quilogramas.

1.2.2.3. Fator de conversão

Exibe um coeficiente para a conversão de m³ de LNG para m³ de GN. Não necessita de Inputs.

1.2.2.4. Balanço e ajuste de tempo das conexões

O tempo gasto em paradas, ajustes e conexões ao longo do transporte. Inserir na célula E24 valor em horas.

1.2.2.5. Tempo para enchimento

O tempo necessário para preencher o tanque de transporte. Inserir valor na célula E25 em horas.

1.2.2.6. CAPEX caminhões

O emprego de capital feito para cada caminhão. Inserir na célula E26 o valor em USD gasto por caminhão.

1.2.2.7. Substituição dos caminhões

O tempo de depreciação dos caminhões, após o qual deverão ser substituídos. Inserir na célula E27 o valor em anos.

1.2.2.8. Rendimento dos caminhões

O consumo de combustível dos caminhões. Inserir na célula E28 o valor em Km/Litro.

1.2.2.9. Distância da planta de liquefação para a regaseficação

O trajeto a ser percorrido pelo comboio entre a planta de liquefação e a planta de regaseficação. Inserir na célula E29 o valor em Km.

1.2.2.10. Velocidade média de transporte

A velocidade média de viagem do comboio ao longo do trajeto. Inserir na célula E30 o valor em Km/hr.

1.2.2.11. Capacidade do caminhão

O volume de LNG que o caminhão é capaz de transportar por viagem. Inserir na célula E31 o valor em m³.

1.2.2.12. CAPEX

1.2.3. Transporte e Regaseficação

Os dados referentes a fase de transporte e regaseficação deverão ser inseridos em três células.

1 2 2	A B C D E Economic Model for N Date of analysis Project name					F del for NG sis	
4 5	for Gas Innovation						
6							
8						INPUTS	
9	ID	Туре	Description		VALUE CHAIN - STAGE	Value	Unit
33	24	Time	Max hours of working		Transport		hour
34	25	Capacity	Regas plant		Regasification		million ton per annum
35	26	CAPEX	Regas plant		Regasification		Usd/tonne

Figura 8 - Input: Transporte e Regas

1.2.3.1. Horas máximas de trabalho

As horas máximas de trabalho possíveis durante o transporte. Inserir na célula E33 o valor em horas.

1.2.3.2. Capacidade da planta de Regaseficação

A capacidade de transformação de GNL em GN da planta. Inserir na célula E34 o valor em toneladas por ano.

1.2.3.3. CAPEX da planta de regaseficação

O capital alocado na construção da planta de regaseficação. Inserir na célula E35 o valor em USD por tonelada.

1.2.4. Armazenamento

Os dados referentes a fase de armazenamento devem ser inseridos nas células seguintes.

1 2	A	A B C D E Economic Model for NG Date of analysis				F del for NG sis	
3 4 5	for Gas Innovation			Project name			
6 7 8						INPUTS	
9	ID	Туре	Description		VALUE CHAIN - STAGE	Value	Unit
36	27	Capacity	Storage days capacity		Storage		#daysstorage
37	28	CAPEX	Storage Tanks		Storage		USD/m3
38	29	Capacity	Storage capacity per tank		Storage		m3 of LNG

Figura 9 - Input: Armazenamento

1.2.4.1. Capacidade de armazenamento diária

A quantidade de dias em que a armazenagem é possível. Inserir na célula E36 o valor em dias de armazenagem.

1.2.4.2. CAPEX dos tanques de armazenamento

A despesa de capital com os tanques de armazenagem. Inserir na célula E37 o valor em USD por m³.

1.2.4.3. Capacidade de armazenamento por tanque

A capacidade de armazenagem de LNG do tanque. Inserir na célula E38 o valor em m³.

1.2.5. Liquefação

Os dados de dimensionamento da fase de liquefação deverão ser inseridos da seguinte maneira.

1	А	в	С		D	E	F
1 2 3 4 5	Research Centre for Gas Innovation			Economic Mo Date of analy: Project name	del for NG sis		
6 7 8						<u>INPUTS</u>	
9	ID	Туре	Description		VALUE CHAIN - STAGE	Value	Unit
39	30	Energy	Consumption liquefaction	n plant	Liquefaction - Prod.		kwH/tpa
40	31	Energy	Energy cost		liquefaction - Prod.		R\$/kwh
41	32	Capacity	Liquefaction plant capaci	ty	Liquefaction - Prod.		million ton per annum
42	33	CAPEX			Liquefaction - Prod.		Usd/tonne

Figura 10 - Input: Liquefação

1.2.5.1. Consumo energético da planta de liquefação

A quantidade de energia gasta pela planta de liquefação. Inserir na célula E39 o valor em watts por tpa.

1.2.5.2. Custo da energia

O preço da energia. Inserir na célula E40 o valor em R\$ por kwh.

1.2.5.3. Capacidade da planta de liquefação

A capacidade da planta de liquefazer GN. Inserir o valor na célula E40 em milhões de toneladas por ano.

1.2.5.4. CAPEX da planta de liquefação

O capital empregado na construção da planta de liquefação. Inserir na célula E41 o valor em USD por tonelada.

1.3. Aba (INPUT) OPEX Estimation

Nesta aba serão inseridos os valores de operação para as diferentes fases da logística. É importante frisar que, para efeito de exemplo, alguns valores já foram inseridos como base para o cálculo, porém, todos os valores podem ser alterados pelo usuário, conforme for necessário.

1.3.1. Liquefação

Os custos operacionais da fase de liquefação deverão ser inseridos nas células seguintes.

1	А	В	С	D	E	F
1 2 3 4 5	G	Research for Gas I	n Centre nnovation			
7					INDUT	l
9	ID	Туре	Description	VALUE CHAIN - STAGE	Quantity	Unit
10	1	OPEX	Operating personnel	Liquefaction - Prod.	,	Employee
11	2	OPEX	Maintenance personnel	Liquefaction - Prod.		Employee
12	3	OPEX	Administration personnel	Liquefaction - Prod.		Employee
13	4	OPEX	OPEX personnel/plant	Liquefaction - Prod.		USD/liquefaction plant
14	5	OPEX	Consumables - Refrigerants (Ethane)	Liquefaction - Prod.		Tonne/ Tonne per annum
15	6	OPEX	Consumables - Refrigerants (Propane)	Liquefaction - Prod.		Tonne/ Tonne per annum
16	7	OPEX	Consumables - Chemicals (gas sweetening	Liquefaction - Prod.		Not found
17	8	OPEX	Eletricity	Liquefaction - Prod.		0
18	9	OPEX	Maintenance	Liquefaction - Prod.		% from CAPEX/year
19	10	OPEX	General Administration	Liquefaction - Prod.		% from (Personnel + Maintenance)/year
20	11	OPEX	Insurance and Duties	Liquefaction - Prod.		% from CAPEX

Figura 11 ·	OPEX Input:	Liquefação
-------------	--------------------	------------

1.3.1.1. Colaboradores operacionais

O número de funcionários responsáveis pela área operacional. Inserir na célula E10 o número de funcionários.

1.3.1.2. Colaboradores para manutenção

O número de funcionários responsáveis pela manutenção. Inserir na célula E11 o número de funcionários.

1.3.1.3. Colaboradores administrativos

O número de funcionários responsáveis pela área administrativa. Inserir na célula E12 o número de funcionários.

1.3.1.4. OPEX colaboradores por planta

A célula E13 exibe o total de funcionários por planta considerando salários. Nenhum Input é necessário.

1.3.1.5. Consumo de Etano

O consumo de etano pela planta. Inserir na célula E14 o valor em toneladas por ano.

1.3.1.6. Consumo de Propano

O consumo de propano pela planta. Inserir na célula E15 o valor em toneladas por ano.

1.3.1.7. Consumo de Gás refrigerante

O consumo de gases para a refrigeração do GN pela planta. Inserir na célula E16 o valor em toneladas por ano.

1.3.1.8. Eletricidade

O consumo elétrico da planta de liquefação. Inserir na célula E17 o valor.

1.3.1.9. Manutenção

O gasto com manutenção, representado por uma porcentagem do CAPEX. Inserir na célula E19 o valor em porcentagem.

1.3.1.10. Administração geral

O gasto com atividades administrativas como percentual dos gastos com manutenção e colaboradores. Inserir na célula E20 o valor em porcentagem do gasto com manutenção e pessoal por ano.

1.3.1.11. Seguro e encargos

Os gastos com obrigações regulatórias. Inserir na célula E21 o valor como porcentagem do CAPEX.

ic Model for NG Version ate of analysis 2019-09-03 Research Centre TEST 1 Gas Innovation INPL INPUT US ALUE CHAIN - STAGE no Base Operating personnel iquefaction - Prod Employee USD/ Personne OPE) aintenance personne quefaction - Prod Employe OPEX Employe ministration pe iquefacti on - Pro USD/ Perso OPE) PEX n nnel/plant n - Pr JSD/liquefaction plant OPE) OPE) rigerants (Ethane) n - Pri OPE) OPE) m (Personnel + Maii nce)/year

Figura 12 – OPEX Input: Inserindo preços

1.3.1.12. Salário operacional

O salário a ser pago para os colaboradores operacionais. Inserir na célula H10 o valor em USD por funcionário (obs.: a célula I10 exibe o salário corrigido pela inflação).

1.3.1.13. Salário manutenção

O salário a ser pago para os colaboradores responsáveis pela manutenção. Inserir na célula H11 o valor em USD por funcionário (obs.: a célula I11 exibe o salário corrigido pela inflação).

1.3.1.14. Salário administrativo

O salário a ser pago para os colaboradores administrativos. Inserir na célula H12 o valor em USD por funcionário (obs.: a célula I12 exibe o salário corrigido pela inflação).

1.3.1.15. Total por planta

A célula exibe o valor total a ser pago em salários em cada planta. Não necessita Inputs (obs.: a célula I13 exibe o resultado corrigido pela inflação).

1.3.1.16. Preço do Etano

O custo do etano. Inserir na célula H14 o preço do etano em USD por tonelada (obs.: a célula I14 exibe o preço corrigido pela inflação).

1.3.1.17. Preço do Propano

O custo do propano. Inserir na célula H15 o preço do propano em USD por tonelada (obs.: a célula l15 exibe o preço corrigido pela inflação).

1.3.1.18. Preço dos gases refrigerantes

O custo dos gases utilizados na refrigeração. Inserir na célula H16 o preço dos gases refrigerantes em USD por tonelada (obs.: a célula I16 exibe o preço corrigido pela inflação).

1.3.2. Armazenamento e Regaseficação

Os custos operacionais referentes ao armazenamento e a regaseficação deverão ser inseridos da seguinte forma.

A B C D E F G H J J Economic Model for NG Version Date of analysis Project name TEST 1 Project name TEST

Figura 13 - Preços e OPEX Input: Armazenamento e Regaseficação

1.3.2.1. Colaboradores na unidade satélite

O número de funcionários na unidade satélite. Inserir na célula E21 o número de funcionários (obs.: a célula H21 calcula o salário para o ano base e a célula I21 corrige o valor pela inflação).

1.3.2.2. Outros

Outros custos como manutenção, eletricidade, consumíveis, etc. Inserir o valor na célula E22.

1.3.3. Caminhões

Os custos operacionais relacionados a logística dos caminhões deverão ser inseridos da seguinte forma.

Figura 14 - OPEX Input: Caminhões

1	А	В		С	D	E	F
1 2 3 4 5	G	Research for Gas I) Centre nnovation				
7							
8						<u>INPUT</u>	
9	ID	Туре	Description		VALUE CHAIN - STAGE	Quantity	Unit
23	14	OPEX	Drivers per Lorrie	(3)	Logistic - Lories		Employee/Lorrie
24	15	OPEX	Tires		Logistic - Lories		% from total transportation cost
25	16	OPEX	Maintenance		Logistic - Lories		% from total transportation cost
26	17	OPEX	Overhead		Logistic - Lories		% from total transportation cost
27	18	OPEX	Fuel		Logistic - Lories		% from total transportation cost
28	19	OPEX	Vehicle		Logistic - Lories		% from total transportation cost
29	20	OPEX	Driver		Logistic - Lories		% from total transportation cost
30	21	OPEX	Fuel Cost		Logistic - Lories		R\$

1.3.3.1. Motoristas por caminhão

A quantidade de motoristas necessários por trajeto. Inserir na célula E23 a quantidade de motoristas por caminhão.

1.3.3.2. Pneus

O percentual do custo total gasto com pneus. Inserir na célula E24 a porcentagem do custo total.

1.3.3.3. Manutenção

O percentual do custo total gasto com pneus. Inserir na célula E24 a porcentagem do custo total.

1.3.3.4. Overhead

O percentual do custo total gasto no overhead. Inserir na célula E25 a porcentagem do custo total.

1.3.3.5. Combustível

O percentual do custo total gasto com combustível. Inserir na célula E26 a porcentagem do custo total.

1.3.3.6. Veículo

O percentual do custo total gasto com os veículos. Inserir na célula E27 a porcentagem do custo total.

1.3.3.7. Motorista

O percentual do custo total gasto com motoristas. Inserir na célula E28 a porcentagem do custo total.

1.3.3.8. Preço do combustível

O custo do combustível em determinado ano base. Inserir na célula E29 o preço do combustível.

Figura 15 - OPEX Caminhões: Custo Anual

2. ABAS DE APOIO

2.1. Aba LNG Dimensioning Calculation

Todos os resultados finais obtidos através dos dados de Input adicionados nas tabelas anteriores serão exibidos nesta aba.

2.1.1. Média de consumo diário

Os primeiros dados que são exibidos são as médias de consumo diário para as categorias discriminadas na aba input.

O consumo é dividido ao longo dos anos de contrato que podem variar de um a trinta. Nas coluna G (células de G11 a G17) são exibidos os totais.

4	A B C			D	E	F
1 2 3 4 5 6 7 8	C	Re fo	esearch Centre or Gas Innovation		Economic Model for NG Date of analysis Project name	
9	ID v	Type 👻	Description	VALUE CHAIN - STAGF	Value	Unit 👻
10	1	Contract	Years of Contract	Consumption	annual ref	years
11	2	Volumetric	Daily consumption RES	Consumption	annual ref	m³/day (1yr = 360 days)
12	3	Volumetric	Daily consumption COM	Consumption	annual ref	m³/day (1yr = 360 days)
13	4	Volumetric Daily consumption IND		Consumption	annual ref	m³/day (1yr = 360 days)
14	5	Volumetric	Daily consumption GNV	Consumption	annual ref	m³/day (1yr = 360 days)
15	6	Volumetric	Daily consumption TERM	Consumption	annual ref	m³/day (1yr = 360 days)
16	7	Volumetric	Daily consumption OTHER	Consumption	annual ref	m³/day (1yr = 360 days)
17	8	Volumetric	Daily consumption Total	Consumption	annual ref	m ³ /day (1yr = 360 days)

Figura 16 - Cálculo da média de consumo diário para diferentes categorias

2.1.2. Dados de volume

18	9	Volumetric	Liquefaction plant capacity	Liquefaction - Prod.	1	million ton per annum
19	10	Volumetric	Liquefaction plant capacity	Liquefaction - Prod.	600.000	Ton per annum
20	11	Volumetric	Conversion factor Ton per annum to cubic meter per annum	Liquefaction - Prod.	1.300	m³/annum
21	12	Volumetric	Liquefaction plant capacity in cubic meter per day	Liquefaction - Prod.	2.166.667	m³/day
22	13	Volumetric	Liquefaction plant capacity commitment	Liquefaction - Prod.	annual ref	#

Nesta parte alguns dados sobre a capacidade e volume da planta são adicionados segundo fonte (<u>http://www.igu.org/sites/default/files/node-page-field_file/SmallScaleLNG.pdf</u>). Tomam-se estes dados como padrão, porém todos podem ser alterados para melhor adaptação com o caso estudado.

2.1.3. CAPEX e OPEX da fase de liquefação

O CAPEX e o OPEX são exibidos nesta parte, sendo calculados a partir dos inputs inseridos nas abas anteriores. Todos eles são distribuídos no horizonte de contrato e os valores são exibidos nas células a direita, sendo que os totais estão distribuídos de G24 a G34

24	15	CAPEX	Liquefaction plant	Liquefaction - Prod.	981,6200	USD/tonne
25	16	OPEX	OPEX personnel/plant	Liquefaction - Prod.	2.431.894	USD/liquefaction plant
26	17	OPEX	Consumables - Refrigerants (Ethane)	Liquefaction - Prod.	1.707	USD/Tonne
27	18	OPEX	Consumables - Refrigerants (Propane)	Liquefaction - Prod.	756	USD/Tonne
28	19	OPEX	Consumables - Chemicals (gas sweetening)	Liquefaction - Prod.	1.023.955	USD/year
29	20	OPEX	Maintenance	Liquefaction - Prod.	150%	% from CAPEX/year
30	21	OPEX	General Administration	Liquefaction - Prod.	20%	% from (Personnel + Maintenance)/year
31	22	OPEX	Insurance and Duties	Liquefaction - Prod.	1%	% from CAPEX
32	23	OPEX	Energy consumtpion	Liquefaction - Prod.	471	kwH/tpa
33	24	OPEX	Eenrgy costs	Liquefaction - Prod.	0,15	USD/kwh
34	25	OPEX	Total OPEX	Liquefaction - Prod.	annual ref	USD

Figura 18 - Células de cálculo para CAPEX e OPEX da liquefação

2.1.4. Logistics Lorries

Nesta parte são computados os dados referentes a parte logística dos caminhões. Assim como anteriormente os custos de CAPEX e OPEX são distribuídos no horizonte de tempo dos contratos.

4	Α	В	с	D	E	F	G
39	30						
40	31	Transport	Number of modules required	Logistics - Lorries	annual ref	#modules/day	0,00
41	32	Transport	Number of truck requeried	Logistics - Lorries	annual ref	#trucks/day	0
42	33	Transport	Number of truck requeried rounded up	Logistics - Lorries	annual ref	#trucks/day	1
43	34	Volumetric	Nominal Volume per module	Logistics - Lorries	1		
44	35	Wheight	Empty cilinder wheight	Logistics - Lorries	135	KG	
45	36	Volumetric	Conversion factor 1m3 LNG to NG	Logistics - Lorries	585	m³	http://www.igu.org
46	37	Transport	Truck Capacity	Logistics - Lorries	30	m3 of LNG	http://www.igu.org
47	38	Distance	Distance from the plant to delivery point & total traveled per day	Logistics - Lorries	10	km	17
48	39	Speed	Average transportation speed	Logistics - Lorries	50	km/h	
49	40	Time	Max hours of working	Logistics - Lorries	20	hour	
50	41	Time	Round trip (fueling + to delivery point)	Logistics - Lorries	0	hour	
51	42	Time	Round trip + connections (fueling + connections to delivery point back to liquefaction plant)	Logistics - Lorries	annual ref	hour	0,00
52	43	Time	Balancing and adjusting time and conections	Logistics - Lorries	1,0	hour	
53	44	Time	FilingTime	Logistics - Lorries	0,3	hour	
54	45	Time	Filling Time and transportation	Logistics - Lorries	annual ref	hour	
55	46	CAPEX	Lorries	Logistics - Lorries	30.000,0	USD/lorrie	30.000
56	47	CAPEX	Lorries replacement	Logistics - Lorries	5	years	-
57	48	CAPEX	Tank	Logistics - Lorries	182.849	USD/tank	182.849
58	49	CAPEX	Total CAPEX	Logistics - Lorries	annual ref	USD	212.849
59	50	Cost	Lorrie Yield	Logistics - Lorries	2,2	KM/Litre	8
60	51	OPEX	Fuel Cost	Logistics - Lorries	0,9	USD/litre	7
61	52	OPEX	Drivers per Lorrie (3)	Logistics - Lorries	41.174	USD/year/truck	164.697
62	53	OPEX	Tires	Logistics - Lorries	0	% from total transportation cost	0
63	54	OPEX	Maintenance	Logistics - Lorries	0	% from total transportation cost	1
64	55	OPEX	Overhead	Logistics - Lorries	0	% from total transportation cost	1
65	56	OPEX	Total Opex	Logistics - Lorries	annual ref		164.705

Figura 19 - Células para cálculo de CAPEX e OPEX dos caminhões

2.1.5. Logistics Vessels

A parte logística dos tanques tem seus dados exibidos nesta parte, também tendo seu OPEX distribuído ao longo dos anos de contrato.

Figura 20- Células para cálculo de CAPEX e OPEX dos tanques de transporte

	A	В	С	D	E	F	G	н
58	49	CAPEX	Total CAPEX	Logistics - Lorries	annual ref	USD	212.849	
59	50	Cost	Lorrie Yield	Logistics - Lorries	2,2	KM/Litre	8	
60	51	OPEX	Fuel Cost	Logistics - Lorries	0,9	USD/litre	7	
61	52	OPEX	Drivers per Lorrie (3)	Logistics - Lorries	41.174	USD/year/truck	164.697	
62	53	OPEX	Tires	Logistics - Lorries	0	% from total transportation cost	0	
63	54	OPEX	Maintenance	Logistics - Lorries	0	% from total transportation cost	1	
64	55	OPEX	Overhead	Logistics - Lorries	0	% from total transportation cost	1	
65	56	OPEX	Total Opex	Logistics - Lorries	annual ref		164.705	
66	57	Volumetric	Vessel capacity	Logistics - Vessel	7.500	m3 of LNG		
67	58	Volumetric	Fillable Volume	Logistics - Vessel	1	% of capacity		
68	59	Volumetric	Boil off	Logistics - Vessel	0	% per day		
69	60	Time	Vessel Disponibility	Logistics - Vessel	8.400	hours/year		
70	61	Flow	Vessel Flow rate	Logistics - Vessel	1.000	m³/hour		
71	62	Speed	Vessel Speed	Logistics - Vessel	26	km/h		
72	63	Time	Loading/offloading time	Logistics - Vessel	8	hours/operation		
73	64	Time	Preparation for departure	Logistics - Vessel	29	hours/operation		
74	65	Time	Anchoring and Arrival	Logistics - Vessel	29	hours/operation		
75	66	Time	Preparation for returning	Logistics - Vessel	5	hours/operation		
76	67	Time	Total traveling time for a roundtrip	Logistics - Vessel	1	hour		
77	68	Time	Tota Time for operation	Logistics - Vessel	78	hour		
78	69	Transport	Max of trips per year	Logistics - Vessel	108	trips		
79	70	Volumetric	Volume of LNG shipped	Logistics - Vessel	797.140	m3 of LNG/year		
80	71	Volumetric	Volume of NG shipped	Logistics - Vessel	466.326.752	m3 of NG/year		
81	72	Volumetric	Number of vessel required per year	Logistics - Vessel	annual ref	#vessel/year	0	
82	73	OPEX	Cost	Logistics - Vessel	0,06	USD/mmbtu		
83	74	Volumetric	M3 to mmbtu	Logistics - Vessel	0,04	mmbtu/m3	576	
84	75	OPEX	Total OPEX	Logistics - Vessel	annual ref	USD	35	

2.1.6. Armazenamento

O armazenamento tem seus dados computados nesta parte.

Figura 21- Células para cálculo de CAPEX e OPEX do armazenamento

	Α	В	с	D	E	F	G
85	76	Volumetric	Storage days capacity	Storage	3	#daysstorage	
86	77	Volumetric	Volume of LNG storage	Storage	annual ref	m3 of LNG	0
87	78	Volumetric	Number of storage tanks	Storage	annual ref	#oftanks	1
88	79	Volumetric	Storage capacyty per tnak	Storage	200	m3 of LNG	
89	80	CAPEX	Storage Tanks	Storage	2.017	USD/m3	403.300

2.1.7. Regasification

Do mesmo modo que anteriormente, os inputs são computados e o CAPEX e OPEX da parte de regas são exibidos distribuídos no horizonte de contrato.

4	A	В	с	D	E	F	G
90	81	Volumetric	Regasification plant capacity required	Regasification	annual ref	mtpa	
91	82	Volumetric	Regasification plants	Regasification	annual ref	#plants	0,000
92	83	Volumetric	Regasification plants	Regasification	annual ref	#plants	1
93	84	Volumetric	Regas plant	Regasification	1	million ton per annum	
94	85	CAPEX	Regas plant	Regasification	105	Usd/tonne	52.405.000
95	86	OPEX	Personnel	Storage & Regas	213.324	USD/year/plan	12.159.469
96	87	OPEX	Others - (Eletricity, Other Consumables, Maintanence, General Administration, Insurance)	Storage & Regas	52.417	USD/year/plant	262.084
97	88	OPEX	Total Opex	Storage & Regas	annual ref		12.421.553

Figura 22- Células para cálculo de CAPEX e OPEX da regaseficação

2.2. Aba: Macroeconomic Assumption

Os dados macroeconômicos necessários ao modelo são apresentados nesta aba. Os dados mais importantes desta parte são a taxa de câmbio e a inflação. São apresentadas as taxas de inflação IPCA e IGPM, a partir delas são calculados alguns índices. A inflação para correção do OPEX foi definida como 2% do CAPEX.

	Α	В	С	D	E	F				
1 2 3 4 5 6 7	C	Res for	earch Centre Gas Innovation		Economic Mod Date of analys Project name	del for NG iis				
8	Macroecnomic Assumptions_									
9	ID T	Type of Assumption	Description	Ano de início da previsão 🛛 🚽	Métrica 🔻	REFERÊNCI				
10	1	INFLATION	Inflation rate (IPCA)	2018	%	https://www3.				
11	2	INFLATION	Inflation Index	2019	#					
12	4	USD	USD	2019	\$	https://www3.				
13	9	INFLATION	Inflation rate For OPEX CORRECTION	2009	%	2% CAPEX				
14	10	INFLATION	Inflation index For OPEX CORRECTION	2009	#					
15	11	INFLATION	Inflatio Rate IGPM	2014	http://fundos.					
16	12	M3 to MMBTU	volume/energy	#	mmbtu	http://agnatur				

Todos estes dados são calculados para todo o horizonte de contrato.

Figura 24 - Distribuição dos dados macroeconômicos ao longo dos anos de contrato

G	н	1	J	К	L	М	N	0	Р
Version 1		08/08/2019							
		1							
		J							
0	1	3	4	5	6	7	8	9	10
	YFAR1	YEAR2	YEAR3	YFAR4	YEAR5	YEAR6	YFAR7	YFAR8	YEAR9
0.0000	0.0579	0.0533	0.0527	0.0540	0.0540	0.0540	0.0540	0.0540	0.0540
1,0000	1.0570	1 1 6 9 6	1,0027	1 2008	1,2710	1,4451	1,5321	1,6052	1,6020
1,0000	1,0579	1,1000	1,2201	1,5008	1,5/10	1,4451	1,5251	1,0055	1,0920
3,42	3,4	3,97	4,23	4,42	4,42	4,42	4,42	4,42	4,42
0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
1,0000	1,0200	1,0612	1,0824	1,1041	1,126162419	1,148685668	1,171659381	1,195092569	1,21899442
22,17%									
0,04	0,04	0,04	0,04	0,04	0,0411	0,0411	0,0411	0,0411	0,0411

2.3. Aba Calculation

A aba calculation se propõe a ser uma aba de suporte para o cálculo necessário em outras abas. Além disso nela é calculada a depreciação ao longo dos anos.

Figura 25 - Visualização dos dados de consumo inseridos

Na primeira parte a aba calculation nos traz os dados inseridos na aba input referente ao consumo.

н	1	J	к	L	м	N	0	P
Version	1	2019-08-14						
		_						
TEST 1								
]						
#of customers	connected							
	1							
YEARO	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	YEAR7	YEAR8
30	30	30	30	30	30	30	30	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
(0 0	0	0	0	0	0	0	
· · · · ·	, U	0	0	0	0	0	0	
-	-	-	-	-	-	-	-	
		-						
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	
	1							

Figura 26 - Visualização do número de consumidores conectados

A segunda tabela presente nesta aba considera o número de consumidores e os distribuí pelos anos de contrato.

Figura 27- Índice referente aos anos de contrato

A terceira tabela desta aba nos exibe um índice para cálculo anual. Este índice é utilizado na aba LNG calculation e depende dos anos de contrato.

				40	40	40	40		47		A14
- 4	AL	AM	AN	AU	AP	AQ	AR	AS	AI	AU	AV
5											
6	Year o contract	1	1	1	1	1	1	1 1		1	1
7	Years possible	1	2	3	4	5	6	7	8	9	10
8	_	Volumes: m3	peryear								
9	_	YEARO	YEAR1 *	YEAR2	YEAR3	YEAR4	YEAR5 *	YEAR6 *	YEAR/	YEARS *	YEAR9
10	-	-	3.600	3.600	3.600	3.600	3.600	3.600	3.600	3.600	3.600
11	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-					-	-
13	-	-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	-	-	-	-
15	-	-	-	-	-		-	-	-	-	
17	-	-	-	-	-	-	-	-	-	-	-
12	-										
19			-								-
20	-	-	7,200	7,200	7,200	7.200	7,200	7,200	7,200	7,200	7,200
21		-	-	-	-	-	-	-	-	-	-
22		-	-	-	-	-	-	-	-	-	-
23		-	-	-	-	-	-	-	-	-	-
24	1	-	-	-	-	-	-	-	-	-	-
25		-	-	-	-	-	-	-	-	-	-
26		-	-	-	-	-	-	-	-	-	-
27		-	-	-	-	-	-	-	-	-	-
28		-	-	-	-	-	-	-	-	-	-
29				-	-	-	-	-	-	-	-

Figura 28 - Visualização dos m³consumidos

A quarta tabela apresenta os resultados do cálculo do total dos metros cúbicos de consumo distribuídos ao longo dos anos de contrato.

Figura 29 - Visualização depreciação

	A B C	D	E	F	G	н	1	J	К	L	м
72	-										
74	-										
75	Depreciation	N0 of years	Total to be depreciated	Valor Residua	Check	YEARO	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5
76	- ·	10	-	-	-			-	-	-	-
77	0 YEAR 1	10	-	-	-		-	-	-	-	
78	0 YEAR 2	10	-	-	-		-	-	-	-	-
79	0 YEAR 3	10	-	-	-			-	-	-	-
80	0 YEAR 4	10	-	-	-				-	-	-
81	0 YEAR 5	10	-	-	-					-	-
82	0 YEAR 6	10	-	-	-						-
83	0 YEAR 7	10	-	-	-						
84	0 YEAR 8	10	-	-	-						
85	0 YEAR 9	10	-	-	-						
86	0 YEAR 10	10	-	-	-						
87	0 YEAR 11	10	-	-	-						
88	0 YEAR 12	10	-	-	-						
89	0 YEAR 13	10	-	-	-				Área o	le Plotagem	
90	0 YEAR 14	10	-	-	-						
91	0 YEAR 15	10	-	-	-						
92	0 YEAR 16	10	-	-	-						
93	0 YEAR 17	10	-	-	-						
94	0 YEAR 18	10	-	-	-						
95	0 YEAR 19	10	-	-	-						
96	0 YEAR 20	10	-	-	-						
07	0 0000	10									

A ultima tabela nesta aba consiste nos dados referentes a depreciação. Ela esta dividida em classes e distribuída ao longo dos anos de contrato.

3. ABAS DE RESULTADO

A partir da inserção dos dados e de sua compilação chegamos aos resultados que são exibidos em cinco abas. A primeira delas nos fornece uma visão geral dos custos de CAPEX e OPEX por fases da cadeia produtiva; a segunda nos apresenta os resultados mais importantes, como consumo, logística de transporte e armazenamento, na forma de tabelas e gráficos, permitindo uma rápida visualização; a terceira aba nos mostra os principais demonstrativos financeiros bem como o fluxo de caixa; as últimas duas abas nos mostram a curva custo x distância e a divisão dos custos operacionais.

3.1. Aba LNG dim. (output)

A aba LNG dimensioning output permite a visualização dos dados já inseridos e calculados nas abas anteriores, não requer nenhum input. Isso nos permite enxergar e determinar os principais custos de CAPEX e OPEX e obter a fácil visualização dos dados.

3.1.1. Liquefação

Os primeiros resultados demonstrados referem-se a fase de liquefação. Aqui são exibidos dois gráficos, o primeiro referente a demanda de gás natural em milhões de metros cúbicos por dia e o segundo demonstrando os custos totais de CAPEX e OPEX e o número de plantas de liquefação necessárias.

Ao lado dos gráficos são exibidas duas tabelas que exibem os mesmos dados presentes nos gráficos a diferentes taxas de desconto, exibindo o valor presente de CAPEX e OPEX para diferentes cenários, bem como o CAPEX e OPEX em USD por MMBTU

Figura 30 - Output liquefação

3.1.2. Transporte

A compilação de dados referente a logística de transportes é exibida em dois gráficos e duas tabelas. O primeiro gráfico plota os dados para os primeiros seis anos do número de quilômetros viajados por cada caminhão (em milhões) e o número de caminhões necessários; já o segundo gráfico nos mostra os custos de CAPEX e OPEX para a fase logística de transporte.

Do mesmo modo que anteriormente, as tabelas localizadas ao lado dos gráficos nos exibem os mesmos resultados plotados, para diferentes taxas de desconto.

3.1.3. Logística-Vessels

Os dados referentes ao reservatório são exibidos em duas tabelas e um gráfico. O gráfico nos informa o total de CAPEX e OPEX referentes a este estágio logístico. As duas tabelas auxiliares nos mostram os valores de OPEX, demanda e totais, calculados para diferentes taxas de desconto.

Figura 32 - Output tanque

3.1.4. Armazenamento

A terceira parte desta tabela nos exibe os resultados compilados relacionados com a fase de armazenamento. Assim, temos o CAPEX e o número de tanques necessários plotados na primeira tabela e o armazenamento total exibido na segunda. Do mesmo modo já citado anteriormente, as tabelas laterais exibem os valores de CAPEX e OPEX para os tanques e para o consumo relacionando-os com diferentes taxas de desconto.

3.1.5. Regaseficação

A aba também nos exibe os resultados referentes a parte de regaseficação do LNG. Temos exibidos em um gráfico e duas tabelas de apoio os custos totais para esta fase logística e o cálculo para o número total de plantas de regaseficação. Como anteriormente, as tabelas a direita, nos fornecem os valores de demanda e custo total para diferentes taxas de desconto.

Figura 34 - Output regaseficação

58		Regasification		
59 60	Regasification - Capex OPEX & Total # of	NPV Rates	<u>NPV of Regas</u> CAPEX OPEX	<u>NPV TOTAL</u> (OPFX +CAPFX)
61	regas plants	0%	52.405.000 37.264.659	89.669.659
62	regus plants	5%	52.405.000 27.075.610	79.480.610
63	g ^{60,0}	10%	52.405.000 20.785.451	73.190.451
64	\$ 50,0	15%	52.405.000 16.705.686	69.110.686
65		20%	52.405.000 13.938.392	66.343.392
66	₩ 40,0	25%	52.405.000 11.984.509	64.389.509
67	30,0 0,5			
68	20,0		Demand (m3) NPV MMBTU	USD/MMBTU
69	10,0	0%	2.504.557.440 102.937.31	0,8711
70		5%	1.770.836.772 72.781.39	1,0920
71		10%	1.317.877.991 54.164.78	1,3513
72	Capex Opex Teaks Teaks Teaks Teaks	15%	1.024.091.285 42.090.15	1,6420
73		20%	824.816.451 33.899.95	5 1,9570
74		25%	684.115.954 28.117.16	2,2900
75 76 77		Conversion	factor m3 to mmbtu 0,04	3

3.1.6. Custo ao longo da cadeia

O custo em USD por milhão de BTU compilado para cada fase da cadeia é exibido em duas tabelas e um gráfico. A primeira tabela nos mostra a taxa interna de retorno para diferentes valores, já a segunda tabela nos exibe o custo para cada etapa, bem como o gráfico.

3.2. Aba Financial Analysis

Os indicadores financeiro econômicos como EBTIDA, EBT, NPV, IRR são calculados nesta parte. Os preços do gás e os custos do gás devem ser inseridos em dólares porém o resultado final é exibido em reais.

Figura 36 - Inserção do custo do gás

Nesta parte deverão ser inseridos três dados, o preço do gás em USD/MMBTU, o custo do gás em BRL/m³ e a porcentagem de impostos

a.	A	в	0		Е	F	G	н	I I	J	к	L	м	N	0
8								BRL							
9	FinanciaLdemonstration (BRL nominal terms)						YEARO	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	YEAR7	
10	1	Revenues		GAS PR	ICE USD/MMBT	U <mark>8,50</mark>		•	13.571	17.504	19.599	21.633	22.864	24.033	25.400
11	2	Gas cost		GAS CC	ST_BBL/M	0,75091	1		8.579	9.477	3,353	10.543	11.119	11.719	12.352
12	3	Margin					I .		4.991	8.027	9.640	11.143	11.745	12.379	13.048
13	4	Operational expenses						· .	· ·		• •	-			-
14	5	EBITDA						· ·	4.991	8.027	9.640	11.143	11.745	12.379	13.048
15	6	Depreciation					1	· ·				-			-
16	7	Residual Value													
17	8	Amortization													
18	3	EBT						· ·	4.331	8.027	3.640	11.143	11.745	12.373	13.048
19	10	Taxes		Z of tax	es	34%		· ·	1.697	2.729	3.278	3.789	3.993	4.209	4.436
20		Net profit						<u> </u>	3.294	5.238	6.362	1.355	6.62	8.1/0	8.612
21															
22							1								
23	Cash_fk	ow (BRL nominal terms)	I					YEAR0	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	YEAR7
24	5	EBITDA						•	5.280,48	9.379,91	11.838,55	14.495,09	16.102,82	17.888,88	19.873,05
25	12	Investments]					-			-
26	13	Residual Value										-			-
27	14	Conversion expenses													
28	15	Customer contribution	n												
23	10	Taxes						· ·	1.697	2.729	3.278	3.789	3.993	4.203	4.436
30	16	CASH_FLOW							6.978	12.103	15.116	18.284	20.096	22.098	24.309
31	17	IBB (Nominal Terms)						#NÚM!							
32															
33	Cash_fle	ow (BRL real terms)						YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	YEAR7	YEAR8
34	17	CASH_FLOW							6.595,69	10.362,22	12.309,02	14.056,09	14.657,83	15.292,07	15.960,55
35	18	IBB (Beal Terms)						T #NÚM!							
36															
37	37						,								
38	38 NPV						0	1	2	3	4	5	6	7	
39	Rate	Value (BRL real ter	ms)	Value (Bi	RL nominal terms)										
40	0%	708	5.628			2.122.190,50			6.596	10.362	12.309	14.056	14.658	15.292	15.961
41	5%	31	2.547			800.815,53		· ·	6.282	9,399	10.633	11.564	11.485	11.411	11.343
42	10%	16	5.318			361.234,38		· · ·	5.996	8.564	9.248	9.600	9.101	8.632	8.190
43	15%	10:	2.504			193.032,79		· · ·	5.735	7.835	8.093	8.037	7.288	6.611	6.000

Figura 37 - Indicadores financeiro econômicos

Partindo desses três dados e levando em conta os inputs inseridos nas abas anteriores são calculados e exibidos diferentes indicadores.